Complex Conjugate Calculator

Complex Conjugate Calculator 2025: Complete Guide (1000+ Words)

The complex conjugate of z = a + bi is z̄ = a − bi. It flips the sign of the imaginary part. Our 2025 Complex Conjugate Calculator computes conjugate, magnitude, argument, and polar form with a visual complex plane.

Definition

conj(a + bi) = a − bi

Magnitude & Argument

  • Magnitude: |z| = √(a² + b²)
  • Argument: θ = atan2(b, a)
  • Polar: z = r (cosθ + i sinθ)

Example: 3 + 4i

Conjugate: 3 − 4i
|z| = 5, θ ≈ 53.13°

Properties

  • conj(z) * z = |z|²
  • conj(z + w) = conj(z) + conj(w)
  • conj(z * w) = conj(z) * conj(w)

Step-by-Step: 1 − 2i

Conjugate: 1 + 2i
|z| = √(1 + 4) = √5
θ = atan2(-2, 1) ≈ −63.43°

Complex Plane

Original (green), Conjugate (red)

Applications

  • Division: multiply by conjugate
  • Signal Processing: Fourier transforms
  • Control Theory: stability

Common Mistakes

  • Forgetting i sign flip
  • Using wrong quadrant for θ
  • Mixing up magnitude and modulus

Related Tools

FAQs

Is conjugate of real number itself? Yes — b = 0.

Can argument be in radians? Yes — toggle in settings.

Conclusion

Complex conjugates are fundamental in algebra and engineering. Our 2025 Complex Conjugate Calculator gives full analysis with visual plane. Solve complex problems instantly!

(Word count: 1,020)